
Journal of Computer Engineering, Electronics and Information Technology (COELITE)

Volume 1, Issue 1, April 2022, pp. 01~08

e-ISSN: 2829-4149 | p-ISSN: 2829-4157 1

Journal homepage : https://ejournal.upi.edu/index.php/COELITE Email : coelite@upi.edu

Analysis of Model-Free Reinforcement Learning Algorithm for

Target Tracking

Muhammad Fikry1, Rizal Tjut Adek2, Zulfhazli3, Subhan Hartanto4, Taufiqurrahman5, Dyah Ika

Rinawati6
1,2 Department of Informatics, Universitas Malikussaleh, Indonesia

3 Department of Civil Engineering, Universitas Malikussaleh, Indonesia
4 Department of Computer Science, Universitas Pat Petulai, Indonesia

5 Department of Informatics, Universitas Sumatera Utara, Indonesia
6 Department of Industrial Engineering, Universitas Diponogoro, Indonesia

ARTICLE INFO ABSTRACT

Article history’s:

Received : 30 January 2022

Revised : 28 February 2022
Accepted : 17 March 2022

 Target tracking is a process that can find points in different domains. In

tracking, some places contain prizes (positive or negative values) that the agent

does not know at first. Therefore, the agent, which is a system, must learn to

get the maximum value with various learning rates. Reinforcement learning is

a machine learning technique in which agents learn through interaction with

the environment using reward functions and probabilistic dynamics to allow

agents to explore and learn about the environment through various iterations.

Thus, for each action taken, the agent receives a reward from the environment,

which determines positive or negative behavior. The agent's goal is to

maximize the total reward received during the interaction. In this case, the

agent will study three different modules, namely sidewalk, obstacle, and

product, using the Q-learning algorithm. Each module will be training with

various learning rates and rewards. Q-learning can work effectively with the

highest final reward at a learning rate of 0.8 for 500 rounds with an epsilon of

0.9.

Keywords:

Target tracking

Machine learning

Reinforcement learning
Q-Learning

Muhammad Fikry,

Department of Informatics, Universitas Malikussaleh, Indonesia

Email: muh.fikry@unimal.ac.id.

1. INTRODUCTION

Determination of distribution channels can determine the optimal path with distance, time, and capacity

as aspects of consideration [1]. Many methods can be used to optimize the path, such as the Heuristic

Algorithm, the Tabu Search Method for delivery [2], the Ant Colony Optimization (ACO) method for mobile

robot navigation [3], and others. Getting the optimal path will provide many advantages in terms of time, speed,

cost and avoid losses caused by certain conditions such as congestion. The optimal path is determined from

one place to a particular destination, and it has a starting point and stops at a predetermined endpoint with

various conditions encountered. We try to approach the initial situations at any point and the stopping point in

more than one place, meaning that it has several places as temporary stops and one final stop that occurs

anywhere (random location).

In this study, we consider the problem of tracking multiple objects in an environment. An environment is

a rectangular space bounded by a sidewalk. We use model-free reinforcement learning to train the tracker to

detect the product and avoid any obstacle in its movement. In other words, the agent must find the best way to

achieve the highest reward. However, one of the challenges in reinforcement learning is the problem of

exploration vs. exploitation, which is a trade-off between obtaining a tip from a choice that is considered safe

and exploring other possibilities that may be profitable. The investigation allows increasing agent knowledge,

which leads to long-term benefits. At the same time, exploitation chooses the action to get the most rewards

but leads to less than optimal behavior. Our learning is done through python simulations to observe the system's

characteristics. The agent will explore specific paths to get information. Then, the agent uses this information

https://ejournal.upi.edu/index.php/COELITE
file:///C:/anugrah/01_UPI/03_Tridarma/02_Penelitian/Pendirian%20Jurnal%20Teknik%20Komputer%20UPI/Format%20Penulisan/jiteki@ee.uad.ac.id

Journal of Computer Engineering, Electronics and Information Technology (COELITE)

Volume 1, Issue 1, April 2022, pp. 01~08

e-ISSN: 2829-4149 | p-ISSN: 2829-4157 2

Journal homepage : https://ejournal.upi.edu/index.php/COELITE Email : coelite@upi.edu

in the exploitation to choose the best path for branching lanes. The agent will take action using greedy epsilon.

Therefore, it is essential to get the best level of learning for agents to bring efficiency in taking steps.

2. METHOD

2.1. Reinforcement Learning

As part of machine learning methods, reinforcement learning (RL) [4,5] has been widely used in several

disciplines to find optimal policies in an uncertain environment. Many studies have been carried out to develop

RL techniques to find optimal feedback solutions, such as the zero-sum game problem [6] RL works by

interacting with the environment. The RL algorithm works like the human brain when making several decisions

and helps to take decisions sequentially. Fig. 1 shows the interaction of agents with the environment in taking

action to maximize reward.

Fig. 1. Interaction of agent with environment

RL studied effective strategies for agents from experimental trials and received feedback. With an

optimal design, agents can actively adapt to the environment to maximize future rewards. The agent can remain

in one of the many states (s ∈ S) in the background and choose to take action (a ∈ A) to move from one state

to the next. The state where the agent will arrive is determined by the transition probability between states (P).

After the action is taken, the environment rewards (r ∈ R) as feedback. In this study, state (s) is the location,

activity (a) is the action (movement) that must be taken, and the reward (r) is the initial value given when the

move occurs.

In defining the reward function and transition probability. If the model is known, it means planning

with perfect information, i.e., doing model-based RL. We can find the optimal solution with Dynamic

Programming (DP) when we fully see the environment. However, if the model is unknown, that means learning

with incomplete information, i.e., doing RL model-free or learning the model explicitly as part of the algorithm.

The model describes the environment, and we can study or infer how the environment will interact

with models and provide feedback to agents. This model has two main parts, the transition probability function

P and the reward function R. In equation (1), the transition function P records the transition probability from

state (s) to (s') after performing an action and obtaining (a) temporary reward (r).

𝑃(𝑠′, 𝑟|𝑠, 𝑎)=ℙ[𝑆𝑡+1 = 𝑠′, 𝑅𝑡+1|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (1)

Thus, the transition function between states can be defined in equation (2) as a function of P(s′,r|s,a).

𝑃𝑠𝑠′
𝑎 = 𝑃(𝑠′|𝑠, 𝑎)

=ℙ[𝑆𝑡+1 = 𝑠′, 𝑅𝑡+1|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

= ∑ 𝑃(𝑠′, 𝑟|𝑠, 𝑎)𝑟∈𝑅 (2)

And the reward function R in equation (3) predicts the next reward based on an action. The agent's

only goal is to maximize the total reward he receives in the long run. Therefore, this reward function is

important in mapping each state in the environment to a numerical reward.

𝑅(𝑠, 𝑎) = 𝔼[𝑅𝑡+1|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

= ∑ 𝑟𝑟∈𝑅 ∑ 𝑃(𝑠′, 𝑟|𝑠, 𝑎)𝑟∈𝑅 (3)

https://ejournal.upi.edu/index.php/COELITE
file:///C:/anugrah/01_UPI/03_Tridarma/02_Penelitian/Pendirian%20Jurnal%20Teknik%20Komputer%20UPI/Format%20Penulisan/jiteki@ee.uad.ac.id

Journal of Computer Engineering, Electronics and Information Technology (COELITE)

Volume 1, Issue 1, April 2022, pp. 01~08

e-ISSN: 2829-4149 | p-ISSN: 2829-4157 3

Journal homepage : https://ejournal.upi.edu/index.php/COELITE Email : coelite@upi.edu

2.2. Q-Learning

Q-learning is one of the important breakthroughs in reinforcement learning, which is the development of

the Temporal Difference algorithm introduced by Watkins in 1989 [7,8] but The Q learning algorithm in its

early use is flawed in several aspects and its application is limited [9]. Nowadays, some improved method of

Q-Learning which combine with the Deep Learning method and named Deep Q-Learning and has been

implemented in robotic application [10]. The Q in q-learning stands for quality, which indicates how useful a

given action is in getting rewards in the future. Equation (4) below is in the form of the Q-learning formula.

𝑄(𝑆𝑡 , 𝐴𝑡)←𝑄(𝑆𝑡 , 𝐴𝑡) + 𝛼(𝑅𝑡+1 + 𝛾 𝑚𝑎𝑥𝑎∈𝐴𝑄(𝑆𝑡+1, 𝑎) − 𝑄(𝑆𝑡 , 𝐴𝑡)) (4)

Q-learning takes action with the highest reward because Q-learning does not use a behavior policy to

select the additional action At+1. Instead, estimate the expected future return in the update rule as max A Q

(St+1, A). The max operator used follows a greedy policy. Q-Learning will converge to the optimal solution

assuming that, after generating experience and training, it switches to a greedy policy. In equation (4), St is

state S at time t, At which is action A at time t, while St+1 is the next state which will be the target of movement,

and action At+1 and reward Rt+1. Therefore, the transition probability function P and the reward function R

affect the next reward that will be obtained. We define the set of states S as {1, 2, …, 40} which means we

have 40 location points, the group of actions A {up, down, left, right} which means that the possible moves

are up, down, left, right, while for the positive R reward while {1, 10, 100} and the negative R reward while

{-1, -10, -100}.

2.3. System Performance

The flow of system performance is shown in Fig. 2 We will first create a table of n columns and m rows,

where n is the number of actions and m is the number of states. Then assign zero values to all columns and

rows. In the next step, we will select action an in state (s) based on the q-table, but as mentioned earlier, at the

start, all values are 0. So, we use the greedy epsilon method to select actions randomly (up, down, left, right).

Fig. 2. System performance scenario using Q-learning

The system will execute the chosen action based on the greedy epsilon. After the move is obtained, the

rewards and results are observed, then update the Q(s, a) function according to equation (4). After that, we will

return to step two to do the next round until the condition stops. Table Q helps us find the best action in each

state, and this is useful for maximizing the expected reward by choosing the best of all possible activities. Q(s,

Q-Table Initialization

Choose Action

Take Action

Measuring Reward

Update Q-Table

https://ejournal.upi.edu/index.php/COELITE
file:///C:/anugrah/01_UPI/03_Tridarma/02_Penelitian/Pendirian%20Jurnal%20Teknik%20Komputer%20UPI/Format%20Penulisan/jiteki@ee.uad.ac.id

Journal of Computer Engineering, Electronics and Information Technology (COELITE)

Volume 1, Issue 1, April 2022, pp. 01~08

e-ISSN: 2829-4149 | p-ISSN: 2829-4157 4

Journal homepage : https://ejournal.upi.edu/index.php/COELITE Email : coelite@upi.edu

a) returns the expected future reward of the action on that state. When the q-table is ready, the agent will exploit

the environment and take better steps.

3. RESULTS AND DISCUSSION

Fig. 3 shows that when the agent moves, the agent will learn the best path to the end of the sidewalk

through the reward function. Agent (A) starts at position (1,1). Sidewalks consist of rows and columns, not

sidewalks denoted by a line (-). Obstacles (x) and Product (o) are placed randomly.

Fig. 3. Location of sidewalk, obstacles and product points

In this case, the state is a collection of locations, and actions are moves that the agent can perform.

The state-transition function is the probability of an agent moving from one state to another through several

actions. As an algorithm for learning with incomplete information, q-learning is chosen in this study for the

application of RL, which is used to train agents in the environment. When q-learning is applied, we create a

matrix that follows the form [state, action] and assigns an initial value (q-value) of zero. We then update and

store the q-value after each round. The matrix, called q-table, becomes a reference table for agents to choose

the best action based on the q-value. The state values for each possible action are entered into the q-table. The

most significant matter is obtained according to the action that will give the maximum value from the next

step.

We will train agents on each module and combine them linearly. The selected action is determined by

the greedy method; the agent will use the appropriate q-table to choose the action with the maximum expected

value. However, the steps are not deterministic, so it is possible that the agent will not initially take the best

move for a given state to encourage exploration. The sidewalk module is trained to give positive rewards to

agents when they reach the sidewalk's end and give them negative rewards when they move out of the sidewalk.

In the obstacles module, the agent has a window with 3×3 dimensions. If the object is in the window in a

specific state, the agent will get punishment based on the reward function based on the distance between (0 –

1). With this, if the agent is outside the sidewalk and is in window obstacles, the negative value obtained is

even greater. It may result in the agent starting training again from the beginning. The opposite happens if the

agent is in the product window in a particular state, the agent will get a reward based on the distance-based

reward function (0 – 1).

Modules are trained with various learning rates and rewards. Learning rate determines the extent to

which information can override old details. Fig. 4 shows the last reward for each module in each training round.

Fig. 5 is a heatmap of the q-table on the sidewalk module for the “up” action. The darker areas show a lower

q-value, while the lighter areas show a higher q-value. We display a heatmap from the q-table with the three

highest learning rates for each module. Fig. 5 shows that agents are learning to stay away from the sidewalk.

https://ejournal.upi.edu/index.php/COELITE
file:///C:/anugrah/01_UPI/03_Tridarma/02_Penelitian/Pendirian%20Jurnal%20Teknik%20Komputer%20UPI/Format%20Penulisan/jiteki@ee.uad.ac.id

Journal of Computer Engineering, Electronics and Information Technology (COELITE)

Volume 1, Issue 1, April 2022, pp. 01~08

e-ISSN: 2829-4149 | p-ISSN: 2829-4157 5

Journal homepage : https://ejournal.upi.edu/index.php/COELITE Email : coelite@upi.edu

Fig. 4. The last reward for each module

Fig. 5. Q-table on the sidewalk module

Furthermore, the obstacle module is trained with varying alpha values and rewards after 1000 training

rounds. Fig. 6 is a heatmap of the Q-table for the obstacle module for the “up” action. Fig. 6 shows that the

agent is learning to avoid obstacles.

https://ejournal.upi.edu/index.php/COELITE
file:///C:/anugrah/01_UPI/03_Tridarma/02_Penelitian/Pendirian%20Jurnal%20Teknik%20Komputer%20UPI/Format%20Penulisan/jiteki@ee.uad.ac.id

Journal of Computer Engineering, Electronics and Information Technology (COELITE)

Volume 1, Issue 1, April 2022, pp. 01~08

e-ISSN: 2829-4149 | p-ISSN: 2829-4157 6

Journal homepage : https://ejournal.upi.edu/index.php/COELITE Email : coelite@upi.edu

Fig. 6. Q-table on the obstacle module

Finally, the product module is trained on various alpha values and rewards after 1000 training

rounds, and can be seen in Fig. 7.

Fig.7. Q-table on the product module

https://ejournal.upi.edu/index.php/COELITE
file:///C:/anugrah/01_UPI/03_Tridarma/02_Penelitian/Pendirian%20Jurnal%20Teknik%20Komputer%20UPI/Format%20Penulisan/jiteki@ee.uad.ac.id

Journal of Computer Engineering, Electronics and Information Technology (COELITE)

Volume 1, Issue 1, April 2022, pp. 01~08

e-ISSN: 2829-4149 | p-ISSN: 2829-4157 7

Journal homepage : https://ejournal.upi.edu/index.php/COELITE Email : coelite@upi.edu

Fig. 8 is showing a heatmap of the linear combinations of the three q-tables for the “up” action.

Fig 8. Q-Table combination module

To balance exploration and exploitation during training, we used the epsilon-greedy method. We give a

value of epsilon=0.9, which means with a probability of 0.9, an action is chosen randomly from the action

space. With a probability of 0.1, an effort is selected greedily based on argmax(Q). The highest final reward is

obtained with a learning rate of 0.8 in 500 rounds. More training provides more learning opportunities for

agents, and this is the more stable the reward value will be. In other words, the agent is getting better at tracking,

determining the action to the next state to get a positive reward.

4. CONCLUSION

Q-learning is a practical algorithm for RL problems with incomplete information. This works best when

the agent has a limited number of actions to perform in an environment with random conditions. Moreover, it

effectively divides the problem into separate modules that can be adjusted and linearly combined. The agent

will learn more to get the best reward with the higher learning rate value used. Still, the risk that arises is the

possibility of error also increasing because it affects the agent to ignore previous knowledge to explore options.

The higher the epsilon value, it allows the agent to expand his knowledge for each action, which leads to long-

term benefits, increases the accuracy of value estimates, and allows the agent to make more informed decisions

in the future, but may result in reduced chances of getting the most rewards. RL with the q-learning algorithm

can also be used to determine the shortest route or optimize the movement of the robot in collecting rewards

and avoiding certain states that can result in losses. The knowledge obtained from this research is expected to

be a suggestion for system improvement or identification of influential variables related to tracking.

REFERENCES

[1] Prabowo, R. C. (2018) ‘Penentuan Rute Distribusi Barang Yang Optimal Dengan Menggunakan

Algoritma Heuristik pada PT. XYZ’, Strategy: Jurnal Teknik Industri, 3(1), pp. 47–50.

[2] Hendra Bucika Glen Kadam, IG. Jaka Mulyana, J. M. (2018) ‘Penentuan Rute Terpendek Dengan

Metode Tabu Search (Studi Kasus)’, Widya Teknik, 17(2), pp. 94–103.

[3] Sirojul Hadi, Parama Diptya Widayaka, Radimas Putra M.D.L, R. D. (2020) ‘Pengukuran Jarak Pada

Mobile Robot Menggunakan Xbee Berdasarkan Nilai Receive Signal Strength Indicator (RSSI)’, Jurnal

Bumigora Information Technology (BITe), 2(1), pp. 66–70.

[4] Barto, R. S. S. and A. G. (2018) Reinforcement Learning: An Introduction. Second. MIT press.

[5] Laber, J. C. And E. (2020) ‘Q-Learning: Theory and Applications’, Annual Review of Statistics and Its

Application, 7, pp. 279–301.

https://ejournal.upi.edu/index.php/COELITE
file:///C:/anugrah/01_UPI/03_Tridarma/02_Penelitian/Pendirian%20Jurnal%20Teknik%20Komputer%20UPI/Format%20Penulisan/jiteki@ee.uad.ac.id

Journal of Computer Engineering, Electronics and Information Technology (COELITE)

Volume 1, Issue 1, April 2022, pp. 01~08

e-ISSN: 2829-4149 | p-ISSN: 2829-4157 8

Journal homepage : https://ejournal.upi.edu/index.php/COELITE Email : coelite@upi.edu

[6] Chakrabarti, S. M. O. T. S. (2018) ‘Reinforcement learning algorithms for uncertain, dynamic, zero-sum

games’, in International Conference on Machine Learning and Applications (ICMLA). IEEE, pp. 48–54.

[7] Watkins, C. J. C. H. (1989) Learning from delayed rewards. Cambridge University.

[8] Ghulam Muhammad Ali, Asif Mansoor, Shuai Liu, Jacek Olearczyk, A. B. and M. A.-H. (2020)

‘Attaining global optimized solution by applying Q-learning’, in International Multidisciplinary

Modeling & Simulation Multiconference, pp. 112–119.

[9] B. Jang, M. Kim, G. Harerimana and J. W. Kim, "Q-Learning Algorithms: A Comprehensive

Classification and Applications," IEEE Access, vol. 7, no. 1, pp. 133653-133667, 2019.

[10] L. Tai and M. Liu, "A robot exploration strategy based on Q-learning network," in 2016 IEEE

International Conference on Real-time Computing and Robotics (RCAR), Angkor Wat, 2016.

[11] R.Liu, F. Nagotte, P.Zanne, M. Mathelin, and B. Dreps, “ Deep Reinforcement Learning fpr the Control

of Robotic Manipulation: A Focussed Mini-Review”MDPI Journal of Robotics, 2021, 10, 22.

https://doi.org/10.3390/robotics10010022.

[12] T. Zhang and H. Mo. “Reinforcemnet Learning for Robot Research: A Comprehensive review and Open

Issues” International Jurnal of Advanced Robotic Systems, 2021, 05, 01. DOI:

10.1177/17298814211007305.

https://ejournal.upi.edu/index.php/COELITE
file:///C:/anugrah/01_UPI/03_Tridarma/02_Penelitian/Pendirian%20Jurnal%20Teknik%20Komputer%20UPI/Format%20Penulisan/jiteki@ee.uad.ac.id

